27 Al- 13 C SPIN COUPLING CONSTANT IN LITHIUM TETRAMETHYLALUMINATE

Osamu YAMAMOTO

National Chemical Laboratory for Industry
1-1-5, Honmachi, Shibuya-ku, Tokyo 151

 $^{27}\text{Al-}^{13}\text{C}$ and $^{13}\text{C-}^{1}\text{H}$ spin coupling constants in LiAl(CH $_{3}$) $_{4}$ were obtained from the ^{13}C NMR spectra, and found to be 71.5 ± 0.5 Hz and 106.5 ± 1.0 Hz, respectively. A brief discussion was made on the coupling constants obtained.

While a number of spin coupling constants between ^{13}C and a nucleus other than proton or fluorine have been reported recently, $^1)$ the coupling constants between ^{13}C and ^{27}Al (J_{AlC}) have not yet been obtained because of a large quadrupole interaction of ^{27}Al (I = 5/2) with the electric field gradient surrounding the nucleus in the molecule. Even in the symmetrical species containing ^{27}Al such as $\text{LiAl}(\text{CH}_3)_4$ (I), the proton signal collapses into a single line in most of solvents, since the tetramethylaluminate anion exists as a contact ion pair with Li^+ in the solutions and the Al atom is still in an environment of the asymmetrical electric field gradient. 2 ,3,4) Only in 1,2-dimethoxyethane (DME), the molecule exists as a separated ion pair, and indeed shows a well resolved signal split by the $^{27}\text{Al}^{-1}\text{H}$ spin coupling in the proton resonance (J_{AlCH} = 6.34 Hz). 2

This suggests us the possibility to obtain the J_{AlC} of (I) in DME. With the expectation we have measured the ^{13}C spectrum of (I) in DME, and actually we were able to obtain a well resolved sextet signal of the methyl carbon in $Al(CH_3)_4$, which is shown in Figure 1. This is the first observation of J_{AlC} as far as the author's knowledge is concerned. J_{AlC} directly obtained from the chart (the average of the five spacings of the sextet) is 71.2 ± 0.5 Hz. The J_{CH} was also obtained from the proton-undecoupled ^{13}C spectrum of (I) in diethylether at about -40°C, and found to be 106.5 ± 1.0 Hz. The ^{13}C chemical shifts of (I) in DME and in ether are 4.2 and 5.2 ppm upfield from TMS, respectively. This trend is reverse to that observed in the proton resonance. 2

Smith, $^{5)}$ and Roberts et al $^{6)}$ have proposed the correlations of J_{XCH} with J_{HCH} and J_{XC} with J_{CC} , respectively, for the tetramethyl derivatives of group IV elements, on the basis of the Fermi contact interaction as follows:

$$J_{XC} = (\alpha_X^2 / \alpha_C^2) (\Delta E_C / \Delta E_X) (Z^*_X / Z^*_C)^3 (n_C / n_X)^3 (g_X / g_C) J_{CC}$$
(1)#

$$J_{XCH} = {\alpha_X}^2 (\Delta E_C / \Delta E_H) (Z^*_{Y}/n_X)^3 (g_X/g_H) J_{HCH}$$
 (2)

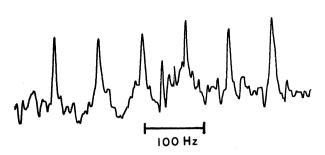


Fig. 1. The proton-decoupled ¹³C spectrum of LiA1(CH₃)₄ at about 8 mole % in DME at room temperature.

where the notations are the same as those in the references. α_χ^2 can be calculated from J_{CH} according to Smith⁵⁾ and found to be 0.361 for $Al(CH_3)_4$. Although these relations are based on rather crude and oversimplified model, both J_{AlC} and J_{AlCH} calculated from equations (1) and (2) are in good agreement with the observed one's, if Z* for Al in the anion is assumed to be 5.3 - 5.4 (for Z* = 5.3, J_{AlC} = 65.5 and J_{AlCH} = 6.43 Hz; for Z* = 5.4, J_{AlC} = 69.3 and

 $J_{\rm AICH}$ = 6.80 Hz). This value of Z* for A1 may be compared with Z*_{NMR} for Si (= 6.02) given by Smith.⁵⁾ The overall validity of equations (1) and (2) is conserved for A1(CH₃)₄, and thus the dominant mechanism is the Fermi contact interaction also in $J_{\rm A1C}$.

(I) was prepared by a known method in the literature, 7 and was dissolved in DME or diethylether in a dry box, a small amount of $\mathrm{C_6D_{12}}$ being added to the solution, which served as a deuterium lock signal. $^{13}\mathrm{C}$ spectra were obtained on a NEVA NV-14 spectrometer with a Varian 620/L computer in an FT mode. So-called long term averaging technique was employed to avoid the difficulty in the dynamic range arising from the presence of strong signals of the solvents.

The author expresses his hearty thanks to Dr. H. Nakanishi in our laboratory for his stimulating discussion, and his assistance in preparing (I).

The equation (1) originally described in reference 6 is probably misprinted. $(n_\chi/n_C)^3$ in reference 6 should be inverted as in (1).

References: (1) J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York (1972).
(2) J. P. Oliber and C. A. Wilkie, J. Amer. Chem. Soc., 89, 163 (1967). (3) J. F. Ross and J. P. Oliver, J. Organometal. Chem., 22, 503 (1970). (4) E. S. Gore and H. S. Gutowsky, J. Phys. Chem., 73, 2515 (1969). (5) G. W. Smith, J. Chem. Phys., 39, 2031 (1963). (6) F. J. Weigert, M. Winokur and J. D. Roberts, J. Amer. Chem. Soc., 90, 1566 (1968); F. J. Weigert and J. D. Roberts, Inorg. Chem., 12, 313 (1973). (7) D. T. Hurd, J. Org. Chem., 13, 711 (1948).